IEEE websites place cookies on your device to give you the best user experience. By using our websites, you agree to the placement of these cookies. To learn more, read our Privacy Policy.
Safety advocates project it could save 4,000 lives per year
In 2022, cars in many countries must start carrying automatic emergency braking. The technology has been around for years, but requiring it marks a major safety milestone for active safety. That’s the sort that prevents a crash instead of protecting you from its effects.
The European Transport Safety Council, a not-for-profit advocacy group in Brussels, estimates that automatic braking can reduce traffic death rates by as much as 20 percent. That’s about 4,000 lives saved each year.
The system—which uses cameras or radar to tell when danger’s up ahead and, if need be, hits the brakes—will be required in May in the European Union. In the United States all models that are new in 2022 come with it, although compliance is voluntary, pending formal rulemaking. Similar rules are also going into effect this year in dozens of other countries.
The EU’s regulations, conceived in 2019, seem to go the furthest, requiring as they do a number of other advanced driver assistance systems—notably emergency lane-keeping assist, drowsiness and distraction recognition, and intelligent speed assistance. That last one works by holding the car within the local speed limit not by braking but by limiting the power the engine sends to the wheels.
The rules require that the driver retain the power to override the systems, which makes for less intrusive nannying. Some people, however, kind of like being nannied. A case in point is intelligent speed assistance, which Ford has offered in Europe on the S-Max since 2015 and on the more affordable Focus since 2017, well before the EU had even decided to make it mandatory.
“In scientific trials, people were a bit resistant to [intelligent speed assistance], but once they got used to it they actually appreciated it,” says Dudley Curtis, a spokesman for the European advocacy group. “Ford marketed it by saying this was a way of never getting a speeding ticket again.”
Mandates aren’t the only way. Back in the 1970s, when antilock braking systems—the original active safety feature—started to become common, customers rushed to buy it as an option because they loved the way it stopped the car on slick pavement. Manufacturers made it standard before government agencies got around to telling them to. Formal requirements came long afterwards—in Europe in 2004 and in the United States in 2012.
Europe now requires emergency braking to protect only against forward collisions; it has broader goals for 2024.
Now the world is more tightly regulated—witness rubberized playgrounds—and the automotive world is tighter still. That’s because it’s moving toward the dream of self-driving vehicles, which demands universal standards. Baby steps that sneak toward that goal also demand tough standards.
The baby step that preceded emergency braking is known as forward-collision avoidance. When sensors see the car closing fast on an obstacle, the system flashes a light, buzzes an alarm, or even shakes the steering wheel, to rouse the driver to action; at the same time, it precharges the braking assist system to respond quickly when the driver does act. An emergency-braking system still does all that—if only to avoid startling the driver—but if it can’t coax the driver into braking, it will do so itself.
Deferring to the guy behind the wheel checks a lot of boxes—human pride, legal niggling, and the engineer’s fear of false positives. These do happen: Some experimental robocars have been known to stop dead in their tracks after mistaking a shadow for something more substantial. Today’s systems still can’t flawlessly identify objects smaller than a vehicle, such as a pedestrian or squirrel, or look at everything that may be happening all around the car.
That’s why the current European regulations require emergency braking to protect only against forward collisions, and only against collisions with big vehicles, not cyclists or pedestrians. Broader goals are on the EU’s safety agenda for 2024. (Note that this year’s requirements apply in full force only to completely new models; existing models will have until 2024 to comply.)
When IEEE Spectrum asked the U.S. National Highway Traffic Safety Administration why automatic braking is still only voluntary, the agency replied in an email that in 2022 it would issue a notice for comments on proposals to require such braking standard for both oncoming vehicles and pedestrians. That puts U.S. regulators about where the Europeans stood three years ago.
“America has done very little,” says Curtis. “But there are plenty of places in Europe that are problematic. Every year we do a report on mortality rates; the safest are still Sweden, the Netherlands—and I was going to say the United Kingdom, but my country has left the EU. At the other extreme are Bulgaria and Romania—Spain was doing poorly, but in a very few years it has come up to near the top of the list.”
All to say, drivers the world over can learn to drive more safely, and in 2022 a lot more of them will be getting a little technological help with that.
This article appears in the January 2022 print issue as “Brakes That Slam Themselves.”
Philip E. Ross is a senior editor at IEEE Spectrum. His interests include transportation, energy storage, AI, and the economic aspects of technology. He has a master's degree in international affairs from Columbia University and another, in journalism, from the University of Michigan.
I have a 2015 Dodge Charger. It has the collision warning and flashes Brake in red. It seems to be working well although in most cases I had already seen when I needed to brake or at least let off the gas. However, several weeks ago while driving at night the system flashed when the nearest car ahead of me was at least a couple of hundred feet away. If it had braked I might have been rear-ended by a car behind me. So it's not perfect.
Actively shielded magnets brought the machines from iron-walled rooms to the mainstream
Joanna Goodrich is the assistant editor of The Institute, covering the work and accomplishments of IEEE members and IEEE and technology-related events. She has a master's degree in health communications from Rutgers University, in New Brunswick, N.J.
The bore of an MRI scanner contains a strong magnet and various coils. The machine uses the resulting magnetic field and radio waves to create images of the patient’s insides.
Magnetic resonance imaging (MRI) is a common strategy physicians use to diagnose diseases such as cancer. The patient is placed on a table that slides into the bore of a scanner, which contains a strong magnet and various coils. The machine uses the resulting magnetic field and radio waves to create images of the patient’s insides.
Full-body MRI scanners were first used clinically in hospitals in the early 1980s, but they were bulky and expensive. Because the magnetic field produced by the machines sometimes strayed outside the room where the MRI scanner was located, safety measures had to be implemented. The stray field was dangerous as it could affect pacemakers and other metal medical devices.
To confine the magnetic field to the room, iron sheets were placed on the walls, ceiling, and floors. The strategy, known as passive shielding, increased construction costs and the time it took to install a scanner, however. The method also restricted where the machines could be built and used.
The addition of secondary actively shielded superconducting magnets in MRI systems in 1986 eliminated the need for iron sheets. The enhancement, unveiled by a team of scientists at Oxford Instruments (now part of Siemens), in Oxfordshire, England, lowered installation costs and shortened construction times.
The IEEE commemorated the magnets as an IEEE Milestone during a ceremony on 17 June at the Siemens Oxfordshire facility.
“The magnets made MRI widely available,” says Izzet Kale. The IEEE member is chair of the IEEE U.K. and Ireland Section, which sponsored the Milestone nomination.
Images produced by MRI scanners aren’t really images in the usual sense. They are constructed by a computer using magnetic fields and radio waves.
Nearly 70 percent of the human body consists of water, and each water molecule has two hydrogen protons. The protons’ magnetic moments (the measure of its tendency to align with a magnetic field) are usually oriented in various directions, but when they are subjected to a strong magnetic field, the protons become polarized and point in the same direction, according to an article about MRI on Canon Medical. The application of radio waves at the right frequency makes the protons’ orientation oscillate. When the radio waves are turned off, the protons revert to their prior state and emit a signal (also a radio wave). The interaction is magnetic resonance.
The strength of the magnetic field produced by an MRI machine can be altered using three sets of gradient electric coils that are made of copper or aluminum, as explained in an article published by the U.S. National Library of Medicine. Gradient electric coils are loops of wire or thin conductive sheets that are located on the innermost part of the scanner’s tube. When current passes through the coils, a secondary magnetic field, or gradient field, is created. The gradient field slightly distorts the main magnetic field and modifies its strength.
Protons in different areas of the patient’s body will resonate at different frequencies depending on how strong the magnetic field is. Receiver coils in the scanner tube improve the detection of the emitted signal.
MRI scanners use those signals to produce images, showing differences in the way protons react.
When MRI scanners were introduced in hospitals, up to 40 tonnes of iron were required to prevent the external magnetic field from straying beyond the room, according to the actively shielded superconducting magnets’ patent. But the extra safety measures made installing a scanner more expensive and difficult because the machine often had to be built in a freestanding building or in the hospital’s basement.
To help lower the cost and make it easier to install scanners, four Oxford Instruments scientists—John Bird, Frank Davis, IEEE Member David Hawksworth, and John Woodgate—in 1986 enhanced the scanner with a second set of actively shielded superconducting magnets. Bird was the project’s lead engineer, Davis was the company’s technical director, Hawksworth was its engineering director, and Woodgate was the managing director.
“Actively shielded superconducting magnets made MRI widely available.”
They created secondary electromagnets that, like the primary ones, operate in a superconducting state: they have no resistance to the flow of an electrical current and can carry large currents without overheating. The electromagnets were forced into a superconducting state by being continually bathed in liquid helium at minus 269.1 °C, according to an entry about the Milestone on the Engineering and Technology History Wiki.
The magnets are made of two coils of wire, either of niobium and titanium or niobium and tin. The coils are embedded in copper.
An electrical current is passed through the coils, each producing its own magnetic field. The coils are oriented so that the magnetic fields they produce oppose each other, according to the technology’s patent.
If, for example, the first coil produces a magnetic field of 2 Teslas and the second coil generates a field that’s 0.5 T, it reduces the strength of the overall magnetic field to 1.5 T. The Tesla is the unit of measurement of a magnetic field’s magnitude.
Although the strength of the scanner’s magnetic field is reduced by the active shielding, it keeps the stray magnetic field inside the room, the developers noted in their patent application.
Thanks to actively shielded superconducting magnets, MRI is now a fundamental diagnostic tool “on which modern medicine depends,” Kale says. “Active shielding was a key enabler to MRI becoming so widespread and important.”
Administered by the IEEE History Center and supported by donors, the Milestone program recognizes outstanding technical developments around the world. The magnets’ Milestone plaque, which is to be displayed inside the Siemens Magnet Technology building in the Eynsham section of Oxfordshire reads:
“At this site, the first actively shielded superconducting magnets for diagnostic magnetic resonance imaging (MRI) use were conceived, designed, and produced. Active shielding reduced the size, weight, and installed cost of MRI systems, allowing them to be more easily transported and advantageously located, thereby benefiting advanced medical diagnosis worldwide.”
Rapid deterioration after death may, over the very short term, be partially reversible
Rebecca Sohn is a freelance science journalist. Her work has appeared in Live Science, Slate, and Popular Science, among others. She has been an intern at STAT and at CalMatters, as well as a science fellow at Mashable.
Illustration of organ perfusion and cellular recovery with OrganEx technology. The cell-saving blood analog is delivered to vital organs one hour after death.
After animals die, rapid biological and chemical processes begin to destroy cells and organs. Previous research on pig brains showed that a treatment the researchers called BrainEx could slow or reverse some of these processes. Now, the team has shown that a modified version of the previous technology, called OrganEx, can create some of the same effects when applied to the entire body of a pig, reversing the deterioration of cells in the liver, heart, kidneys, and other organs after death. Though the preliminary research is far from being used with humans, the researchers say that it could eventually help keep organs viable for donations for longer after an organ donor dies. The research also raises a number of ethical questions, from the welfare of animals to the future allocation of medical resources.
“We have shown that certain cellular functions can be restored in the brain following several hours after cessation of blood flow,” said authors Dr. David Andrijevic, Zvonimir Vrselja, and Dr. Nenad Sestan, of Yale University’s department of neuroscience via email. “We wanted to see whether the same observations could also be seen across multiple vital organs in the whole body.”
Researchers first induced cardiac arrest in anesthetized pigs. Then, they waited one hour before applying their system to the pigs’ bodies. OrganEx is a two-part system, including a device similar to a heart-lung machine that's used to keep patients alive during major heart surgery. The device helps to restore blood circulation and distribute the second part of the technology, a special solution containing ingredients designed to protect cells and restore some cell and organ function. These ingredients include an artificial-oxygen-carrier similar to hemoglobin, amino acids, vitamins, and over 13 drugs meant to reduce inflammation and cell death.
Researchers found that the OrganEx process helped preserve the structure of organs and cells. In addition, they found, many revived organ cells worked similarly to cells in living pigs. These cells—including cells in the heart, liver, and kidneys—also had genetic signatures showing that they were repairing themselves.
According to Jerzy Kupiec-Weglinski, a professor of surgery, pathology, and laboratory medicine at the David Geffen School of Medicine at the University of California, Los Angeles, “the ‘resurrection’ of the brain” under OrganEx’s 6-hour-long treatment is “most striking.” The accomplishment is all the more remarkable, he says, for the hour postmortem that the tissue had been deprived of oxygen.
The OrganEx treatment preserved the cellular structure of brain cells, and even some electrical activity in the brain, though nowhere near the amount of activity that would mean the pigs were conscious. The pigs also had some sporadic movements that the researchers said they do not completely understand.
OrganEx is still in the early stages of testing and development and would need to go through more stages of animal research as well as the clinical trial process before it might be used in humans. But, the study’s authors write, the technology ultimately promises to extend the time after death that organs are viable for transplantation.
“The lack of donor organs is the major problem in our field, and people are dying while waiting for the life-saving organ transplant,” said Kupiec-Weglinski via email. (He is also director of the Dumont-UCLA Transplantation Research Center.)
The OrganEx research also raises a number of ethical questions, including redefining what death is, says Paul Root Wolpe, a bioethicist and director of the Center for Ethics at Emory University.
“Death is the cessation of organized metabolic activity,” he says. “If this process begins to reanimate metabolic activity, then you really are talking about the very, very early first rudimentary possible steps of reversing death.” If researchers were able to restore more activity in the brain, he notes, it could also become difficult to determine if the animals are conscious. Research on coma patients has shown that we don’t always know if humans are conscious based on brain activity alone.
Future use of the new technology could also raise questions about the use of medical resources, says Maksim Plikus, a professor of developmental biology at the University of California, Irvine, who was not involved with the study. Right now, people who are brain-dead are sometimes left on life support, even if there is minimal chance of recovery, draining valuable medical resources. If such technologies could one day restore organ function—though not necessarily brain function—in someone who is clinically dead, this dilemma could become more common, he says.
For their part, the Yale team doesn’t view their research, published this month in the journalNature, as redefining death.
“In our work, we are more focused [on] cellular and organ recovery,” the authors said. “That is what we would like to continue focusing on in the future.”
Learn from Keysight experts on the company's simulation platform PathWave Advanced Design System
The latest technology for serial links and memory interfaces is getting into the multi-gigabit range. We see them adopting multi-level modulations and more advanced data recovery methods. As a result creating a stable and compliant design is more challenging than ever before and standard signal integrity analysis is no longer sufficient.
Register now for this free webinar!
Keysight is offering a design flow, which gives you all the insights you need. In this webinar series, our experts will cover leading edge applications of Keysight's premier SerDes and Memory simulation platform, PathWave ADS, with respect to Signal Integrity, Power Integrity and EMI simulation and analysis.